






The $15 trillion 
question: Can you 
trust your AI?

AI has entered the business mainstream, 
opening up opportunities to boost 
productivity, innovation and 
fundamentally transform operating 
models. As AI grows in sophistication, 
complexity and autonomy, it opens up 
transformational opportunities for 
business and society. More than 70% of 
the executives taking part in a 2017 
PwC study believe that AI will impact 
every facet of business. Overall, PwC 
estimates that AI will drive global 
gross domestic product (GDP) gains of 
$15.7 trillion by 2030.

As businesses adoption of AI becomes 
mainstream, stakeholders are 
increasingly asking what does AI 
mean for me, how can we harness the 
potential and what are the risks? 
Cutting across these considerations is 
the question of trust and how to earn 
trust from a diverse group of 
stakeholders – customers, employees, 
regulators and wider society. There 
have been a number of AI winters over 
the last 30 years which have 
predominantly been caused by an 
inability of technology to deliver against 
the hype. However with technology now 
living up to the promise, the question 
may be whether we face another AI 
winter due to technologists’ focus on 
building ever more powerful tools 
without thinking about how to earn the 
trust of our wider society.

The executive view of AI on trust

AI is growing in sophistication, complexity and autonomy. 
This opens up transformational opportunities for business 
and society. At the same time, it makes explainability ever 
more critical.

67%
of the businesses leaders 
taking part in PwC’s 
2017 Global CEO Survey 
believe that AI and 
automation will impact 
negatively on 
stakeholder trust levels 
in their industry in the 
next five years.
Source: PwC 20th Annual CEO Survey, 
2017

Introduction

This leads to an interesting question – 
does AI need to be explainable (or at 
least understandable) before it can 
become truly mainstream, and if it does, 
what does explainability mean?

In this Whitepaper we look at 
explainability for the fastest growing 
branch of real-world AI, that of Machine 
Learning. What becomes clear is that the 
criticality of the use case drives the 
desire, and therefore the need, for 
explainability. For example, the majority 
of users of recommender systems will 
trust the outcome without feeling the 
need to lift the lid of the black box. This 
is because the underlying approach to 
producing recommendations is easy to 
understand – ‘you might like this if you 
watched that’ and the impact of a wrong 
recommendation is low (a few £ spent 
on a bad film or a wasted 30 minutes 
watching a programme on catch up). 
However as the complexity and impact 
increases, that implicit trust quickly 
diminishes. How many people would 
trust an AI algorithm giving a diagnosis 
rather than a doctor without having 
some form of clarity over how the 
algorithm came up with the conclusion? 
Although the AI diagnosis may be more 
accurate, a lack of explainability may 
lead to a lack of trust. Over time, this 
acceptance may come from general 
adoption of such technology leading to a 
pool of evidence that the technology was 
better than a human, but until that is the 
case, algorithmic explainability is more 
than likely required.

2 | Explainable AI | PwC



Emerging frontier 
The emerging frontier of AI is machine 
learning (ML). For the purposes of this 
paper, we define Machine Learning’ as 
a class of learning algorithms 
exemplified by Artificial Neural 
Networks, Decision Trees, Support 
Vector Machines, etc.: algorithms that 
can learn from examples (instances) 
and can improve their performance 
with more data over time. Through 
machine learning, a variety of 
‘unstructured’ data forms including 
images, spoken language, and the 
internet (human and corporate ‘digital 
exhaust’) are being used to inform 
medical diagnoses, create recommender 
systems, make investment decisions and 
help driverless cars see stop signs 
We primarily focus on machine 
learning, a particular class of AI 
algorithm, because:

i) �ML is the responsible for the majority 
of recent advances and renewed 
interest in AI, and 

ii) �ML is a statistical approach to AI that 
by its very nature can be difficult to 
interpret and validate.

Exhibit 1 | Classifying AI algorithms

Rule based Non rule based

ML Unsupervised learning

Supervised learning

Reinforcement learning

AI

Source: PwC

Operating in the dark 
The central challenge is that many of the 
AI applications using ML operate within 
black boxes, offering little if any 
discernible insight into how they reach 
their outcomes. For relatively benign, 
high volume, decision making 
applications such as an online retail 
recommender system, an opaque, yet 
accurate algorithm is the commercially 
optimal approach. This is echoed across 
the majority of current enterprise AI 
which is primarily concerned with 
showing adverts, products, social 
media posts and search results to the 
right people at the right time. The 
‘why’ doesn’t matter, as long as revenue 
is optimised.

This has driven an approach where 
accuracy, above all else, has been the 
main objective in machine learning 
applications. The dominant users and 
researchers (often in different parts of 
the same large technology firms) have 
been concerned with the development of 
ever more powerful models to optimise 
current profits, and pave the way for 
future revenue streams such as self-
driving cars.

In conversations with clients, we often 
refer to this approach (perhaps 
unfairly!) as ‘machine learning as a 
Kaggle competition’, referencing the 
popular website1 where teams compete 
to build the most accurate machine 
learning models. In our view, this is a 
one dimensional vision of machine 
learning applications, where the biggest, 
latest, most complex methods vie for 
supremacy on the basis of a simple 
mathematical metric.

But what if the computer says ‘No’? The 
absurdity of inexplicable black box 
decision making is lampooned in the 
famous (in the UK at least) ‘Computer 
says No’ sketch2. It is funny for a number 
of reasons, not least that a computer 
should hold such sway over such an 
important decision and not in any way 
be held to account. There is no way of 
knowing if it’s an error or a reasonable 
decision. Whilst we have become 
accustomed to (non-AI) algorithmic 
decisions being made about us, despite 
the potential for unfairness, the use of 
AI for ‘big ticket’ risk decisions in the 
finance sector, diagnostic decisions in 
healthcare and safety critical systems in 
autonomous vehicles have brought this 
issue into sharp relief. With so much at 
stake, decision taking AI needs to be 
able to explain itself.

1 https://www.kaggle.com/ 
2 https://en.wikipedia.org/wiki/Little_Britain
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Building trust
If capitalising on the $15 trillion AI 
opportunity depends on understanding 
and trust, what are the key priorities?

Explainable AI (or ‘XAI’) is a machine 
learning application that is interpretable 
enough that it affords humans a degree 
of qualitative, functional understanding, 
or what has been called ‘human style 
interpretations’. This understanding can 
be global allowing the user to 
understand how the input features (the 
term used in the ML community for 
‘variables’) affect the model’s output 
with regard to the whole population of 
training examples. Or it can be local in 
which case it explains a specific decision.

Explainable AI looks at why a decision 
was made so AI models can be more 
interpretable for human users and 
enable them to understand why the 
system arrived at a specific decision or 
performed a specific action. XAI helps 
bring transparency to AI, potentially 
making it possible to open up the black 
box and reveal the full decision making 
process in a way that is easily 
comprehensible to humans.

Different groups have varying 
perspectives and demands on the level 
of interpretability required for AI. 
Executives are responsible for 
deciding the minimum set of 
assurances that need to be in place to 
establish best practices and will 
demand an appropriate ‘shield’ against 
unintended consequences and 
reputational damage. Management 
require interpretability to gain comfort 
and build confidence that they should 
deploy the system. Developers will 
therefore need AI systems to be 
explainable to get approval to move into 
production. Users (staff and consumers) 
want confidence that the AI system is 
accurately making (or informing) the 
right decisions. Society wants to know 
that the system is operating in line with 
basic ethical principles in areas such as 
the avoidance of manipulation and bias.

Organisations are facing growing 
pressure from customers and regulators 
to make sure their AI technology aligns 
with ethical norms, and operates within 
publicly acceptable boundaries. 

A particular source of concern is the use 
of models that exhibit unintentional 
demographic bias. The use of 
explainable models is one way of 
checking for bias and decision making 
that doesn’t violate ethical norms or 
business strategy.

Organisations have a duty to ensure 
they design AI that works and is robust. 
Adapting AI systems to fall in line with a 
responsible technology approach will be 
an ongoing challenge. PwC is helping 
organisations consider the ethics, 
morality, and societal implications of AI 
through Responsible AI (PwC 2017).

Benefits of interpretability
There are significant business benefits 
of building interpretability into AI 
systems. As well as helping address 
pressures such as regulation, and adopt 
good practices around accountability 
and ethics, there are significant benefits 
to be gained from being on the front foot 
and investing in explainability today. 
These include building trust – using 
explainable AI systems provides greater 
visibility over unknown vulnerabilities 
and flaws and can assure stakeholders 
that the system is operating as desired. 
XAI can also help to improve 
performance – understanding why and 
how your model works enables you to 
fine tune and optimise the model. How 
could better insights into business 
drivers such as revenue, cost, customer 
behaviour and employee turnover, 
extracted from decision making AI, 
improve your strategy? Further benefits 
include enhanced control – 
understanding more about system 
behaviour provides greater visibility 
over unknown vulnerabilities and flaws. 
The ability to rapidly identify and 
correct mistakes in low criticality 
situations add up if applied across all 
intelligent automaton.

Use case criticality
How far does your business need to go? 
When AI is used to target consumers 
through advertising, make investment 
decisions or drive cars, the required 
levels of interpretability will clearly 
vary. We believe that there are three key 
factors to consider when determining 
where interpretability is required and to 
what level (see Exhibit 2).
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Use case criticality: 
Gauging the need for 
explanation
The importance of explainability doesn’t just depend on the 
degree of functional opacity caused by the complexity of 
your machine learning models, but also the impact of the 
decisions they make.

Not all AI is built equal, so it’s important 
to think about why and when 
explanations are useful. Requiring every 
AI system to explain every decision 
could result in less efficient systems, 
forced design choices, and a bias 
towards explainable, but less capable 
and versatile outcomes. 

Working as intended?
A primary driver for model 
interpretability is the need to 
understand how a given model 
makes predictions, while ensuring 
that it does so according to the 
desired specifications and 
requirements demanded of it.

How sensitive is the impact?
The need for interpretability also 
depends on the impact. For an AI 
system for targeted advertising, for 
example, a relatively low level of 
interpretability could suffice, as the 
consequences of it going wrong are 
negligible. On the other hand, the 
interpretability for an AI based 
diagnosis system would be 
significantly higher. Any errors could 
not only harm the patient, but also 
deter adoption of such systems.

Are you comfortable with 
the level of control?
The other key piece in the jigsaw is 
the level of autonomy. Does the AI 
system make decisions and perform 
actions consequently, or do its outputs 
function as mere recommendations to 
human users who can then decide 
whether or not to follow these? 
Explainable factors can be used for a 
level of rules based control or to flag 
to humans automatically. It’s 
important to be able to fully 
understand a system before allowing 
it to make business decisions without 
human intervention.

Exhibit 3 | The need for Explainability

For each AI use case, the verification 
and validation process may require 
different elements of interpretability, 
depending on the level of rigour 
required. Beyond the risk, it’s important 
to consider commercial sensitivities. 
Opening the AI black box would make 
it comprehensible for users, but it 
could also give away valuable 
intellectual property.

Use case criticality
All these various considerations come together to determine whether explainability is necessary and the level of rigour that 
would need to be applied.

Source: PwC
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Explainable by design
As with most engineering processes, you 
must consider the capabilities your 
system requires at the early stages of the 
design phase. Explainability is no 
different – it needs to be considered up 
front and embedded into the design of 
the AI application. It affects the choice of 
machine learning algorithm and may 
impact the way you choose to 
pre-process data. Often this comes down 
to a series of design trade-offs.

Key considerations 
for explainability: 
How to embark on 
explainability
Given a compelling rationale for incorporating explainability 
into an application, how do you choose the appropriate 
machine learning algorithm, explanation technique, and 
method for presenting the explanation to a human?

Trade-off between 
performance and 
explainability
Explainable systems usually incorporate 
some sort of model interpreter. We can 
think of interpretation as a method for 
mapping of a concept (e.g. ‘cat’) to input 
features that a human can make sense of 
(e.g. group of pixels representing 
whiskers). The explanation is the 
collection of interpretable features that 
contribute to the decision (e.g. whiskers 
+ tail + collar => cat). Thus, 
explainability is linked directly to model 
interpretability – the degree to which 
the interpreter can assign interpretable 
features to a model prediction.

Interpretability is a characteristic of a 
model that is generally considered to 
come at a cost. As a rule of thumb, the 
more complex the model, the more 
accurate it is, but the less interpretable 
it is. See Exhibit 6: Relative 
explainability of learning algorithms. 
Complexity is primarily driven by the 
class of machine learning algorithm 
used to generate a model (e.g. Deep 
Neural Network vs Decision Tree) as 
well as its size (e.g the number of hidden 
layers in a neural network).

Explainable AI makes it possible to open 
up the black box and reveal the aspects 
of the decision making process that 
provide a meaningful explanation to 
humans. This however comes with the 
need for additional software 
components and application design 
considerations.
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Exhibit 6 | Relative explainability of learning algorithms

Source: DARPA

Some models however, such as 
decision trees, are highly amenable 
to explanation. It is possible to build 
commercially useful models where 
the entire decision process can be 
diagrammatically illustrated. If the 
model becomes too large for useful 
graphical representation, the tree 
structure of the model means that 
interpreter software can trace clear 
decision paths through the model and 
extract the key determinants of a 
prediction. Neural networks on the 
other hand, whilst amenable to graph 
analysis, contain many more 
connections and have more subtle 
properties with respect to node 
interactions that are inherently 
difficult to interpret.

It’s worth noting that some researchers 
are challenging this long held view 
(such as Montavon et al. 2017), who 
argue that recent advances in 
interpreting neural networks allow 
users deeper insights unavailable from 
simple models because of their 
complexity. This makes intuitive sense 
when, as we shall see later, with features 
that comprise of Deep Neural Nets 
(DNNs), explanations can include 
representations of complex concepts as 
images that can’t be meaningfully 
represented by a simple linear model.

Exhibit 8 | Pixel importance in explaining image recognition

Source: Tulio Ribeiro et al (2016)

Exhibit 7 | Feature importances in investment product suitability

Source: PwC

Likely to be unusable

Suitability metre

Likely to be usable

Top contributing factors

Factors Contribution

1.	 Age

2.	 Risk profile

3.	 Annual income

4.	 Expenditure

5.	 Assets

6.	 Liabilities

7.	 Expected retirement age

8.	 Amount invested

9.	 Product sold

10.	Channel

15.0

13.6

10.5

9.0

3.4

3.0

3.0

2.1

2.1

1.9
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Interpretability is a necessary but not 
sufficient condition for explanation. A 
model interpreter may generate 
representation of a decision process, but 
turning this into a useful explanation can 
be challenging for the following reasons: 

The limits of explainability
The type of learning algorithm that 
generates a model is a key factor in 
determining explainability. But the type 
of explanation required, and the type of 
input data used in the model can be 
equally important.

Feature importances
Most explanations are limited to a list or 
graphical representation of the main 
features that influenced a decision and 
their relative importance. Exhibits 7, 8 
and 9 show typical approaches to 
explanation presentation.

Presenting feature importances in these 
ways largely ignores the details of 
interactions between features, so even 
the richest explanations based on this 
approach are limited to relatively simple 
statements. Domain specific logic can be 
applied to explanations and presented as 
text with a natural language generation 
(NLG) approach. PwC has successfully 
implemented this method in domains 
such as corporate credit rating in which 
rich textual explanations are 
automatically generated. Here is an 
excerpt from an automatically generated 
credit report: ‘Given the company’s 
financials, media references linking it 
with acquisitions is associated with credit 
strength’. As you can see, being 

automatically generated, the grammar is 
not perfect, however statements such as 
these can be aggregated and more 
domain knowledge applied to build 
more ever more complex explanations.

Problem domain
Certain types of problem can’t be readily 
understood by quantifying a handful of 
factors. For example in the field of 
genomics, the prediction is usually 
almost entirely a driven by the 
combinations’ nucleotides. Here, simple 
feature importance conveys little by way 
of an explanation, although richer 
explanatory representations can be 
informative (see Vidovic et al 2016).

Data preprocessing
Many ML applications employ 
significant data pre-processing to 
improve accuracy. For example, 
dimensionality reduction through 
principal component analysis (PCA), or 
using word vector models on textual 
data can obscure the original human 
meanings of the data making 
explanations less informative.

Correlated input features
When highly correlated training data 
is available, correlates are routinely 
dropped during the feature selection 
process or simply swamped by the 
other correlates with more predictive 
power. Hence ambiguity concerning the 
latent factor behind the correlates is 
hidden from the explanation, 
potentially leading the user to an 
incorrect conclusion.

Exhibit 9 | Text importance to explain article saliency

Source: PwC, Original article: Bloomberg

Type of prediction
Certain types of model prediction are 
easier to explain than others. Binary 
classifiers are the easiest (i.e. ‘Is it X or is 
it Y?’). We can talk about factors that 
push the decision in one way or the 
other. This can be extended to ordinal 
multilabel classifiers (e.g. predicting 
credit ratings) and regressors (e.g. 
predicting store sales) that have a 
natural ‘direction’ in the output 
(magnitude of risk or revenue). This 
allows straightforward application of 
domain specific knowledge to enrich 
explanations. In contrast, multi-label 
classifiers in domains where there is 
little or no inherent order (as in many 
image classification problems), are 
generally limited to ‘one vs all’ type 
explanations.
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The benefits of this method are its 
simplicity and ease of implementation. 
In many problem domains, the results 
are very intuitive. It works particularly 
well for simple models with smoothly 
varying behaviour and well separated 
features. However, its simplicity means 
that it can be applied to complex models 
such as DNNs where it is effective for 
extracting pixel importance in image 
recognition explanations.

It’s important to note that sensitivity 
analysis gives explanations for the 
variation in the model output rather 
than the absolute value. Usually this 
provides sufficient explanation: the 
question ‘what makes this image more 
cat-like?’ is essentially indistinguishable 
from ‘what makes this image a cat?’.

This approach has several drawbacks: it 
doesn’t directly capture interactions 
amongst features, and simple sensitivity 
measures can be too approximate. This 
can be potentially problematic for 
discontinuous features such as 
categorical information and one hot 
encoding frequently used in natural 
language processing.

Local Interpretable Model 
– Agnostic Explanations – 
LIME4

LIME addresses the main shortcomings 
of basic sensitivity analysis. Like 
sensitivity analysis, it can be applied to 
any model, but unlike sensitivity analysis 
it captures feature interactions. It does so 
by performing various multi-feature 
perturbations around a particular 
prediction and measuring the results. 
It then fits a surrogate (linear) model to 
these results from which it gets feature 
importances, capturing local feature 
interactions. It can also handle non-
continuous input features frequently 
found in machine learning applications. 
An open source implementation of this 
approach is available5 which currently 
makes this the ‘go to’ interpreter for 
many practitioners.

Shapley Additive 
Explanations – SHAP6

Similarly to LIME, SHAP is a local 
surrogate model approach to 
establishing feature importance. 
It uses the game theoretic concept of 
Shapley values to optimally assign 
feature importances. The Shapley 
value of a feature’s importance is its 
average expected marginal 
contribution after all possible feature 
combinations have been considered.

The Shapley value guarantees to 
perfectly distribute the marginal effect 
of a given feature across the feature 
values of the instance. Thus SHAP 
currently produces the best possible 
feature importance type explanation 
possible with a model agnostic 
approach. This however comes at a cost: 
the computational requirements of 
exploring all possible feature 
combinations grow exponentially with 
the number of input features. For the 
vast majority of problems, this makes 
complete implementation of this 
approach impractical and 
approximations must suffice.

The methods outlined above can be 
applied to any class of model, however, 
richer and more accurate explanations 
are often available with learning 
algorithm specific interpreters.

Tree interpreters
As discussed earlier, decision trees are a 
highly interpretable class of model, 
albeit one of the least accurate. The 
Random Forest algorithm is an 
extension of the basic decision tree 
algorithm which can achieve high 
accuracy. It is an ensemble method that 
trains many similar variations of 
decision trees and makes decisions 
based on the majority vote of individual 
trees. A decision tree interpreter can be 

applied to individual trees in the forest 
and the feature importances aggregated. 
Thus, random forests are highly 
interpretable models with high accuracy 
that can be understood both globally 
and locally. This makes random forests 
the ‘go to’ algorithm in many 
commercial applications. A widely used 
open source tree interpreter package 
‘treeinterpreter’ is available that makes 
this approach relatively straightforward 
to implement7, although significant 
domain expertise may be required for 
multi-label classification problems.

Neural Network 
Interpreters
Neural networks, particularly DNNs, are 
characterised by their complexity and 
consequently are widely considered 
difficult to interpret. In our opinion, the 
issue is more one of a lack of 
generalisability. There is no inherent 
barrier to gaining insight into the inner 
workings of neural networks, but it often 
needs to be tackled on a case by case 
basis requiring significantly more 
expertise and effort than say the 
relatively trivial exercise of extracting 
global feature importances from a 
random forest. 

This effort is often rewarded with 
sometimes surprising and informative 
insights into how the DNN decomposes a 
problem into hierarchies (e.g. fine texture 
vs. gross structure in image classifiers), 
manifolds (simplified representations of 
more complex concepts) and class label 
‘prototypes’ (idealised representations of 
target classes).

4 Tulio Riberio et al. (2016) 
5 http://github.com/marcotcr/lime 
6 Lundberg and Lee (2017) 
7 http://blog.datadive.net/random-forest-interpretation-with-scikit-learn/
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Activation maximisation 
(AM)
Is a method that can be used to find a 
DNNs prototypical representation of a 
particular concept. For example, in an 
image recognition DNN, AM could be 
used to produce a visual representation 
of the DNNs concept of a cat. By 
searching for input patterns that 
maximise a particular output (e.g. 
the probability the image is a cat), a 
prototypical cat image can be extracted. 
Thus, AM can afford direct interpretable 
insight into the internal representations 
of DNNs.

Whilst sensitivity analysis is commonly 
used to explain feature importance in 
DNNs, a neural network specific 
approach called Relevance Propagation 
can produce more accurate, robust 
explanations. It can be thought of the 
inverse of sensitivity analysis in that the 
algorithm starts at the model output, 

and works back through the network, 
assigning relevance of inputs from the 
preceding layers (when fed-forward) 
until it reaches the input layer. Whilst 
there are many variations on this 
approach, they tend to be implemented 
on a bespoke basis. However, an open 
source implementation called DeepLIFT8 
is available for those who would rather 
not build an interpreter from scratch. 

In the last section, the trade-offs, limits 
and methods for explainable AI were 
discussed. In the next section we extend 
the discussion to the implications for 
model evaluation – this is key to the safe 
and effective use of AI. In our opinion, 
even slight improvements in the model 
evaluation process can pay dividends in 
future model performance and reducing 
the risk of adverse model behaviour.

Model evaluation: going 
beyond statistical measures
Machine Learning model evaluation is 
critical to validate that systems meet the 
intended purpose and functional 
requirements. The de facto approach 
amongst ML practitioners has been to 
test models on a held-out portion of the 
training data and report error. Graphical 
analysis of confusion matrices, ROC 
curves and learning curves can further 
enhance the tester’s understanding of 
the model’s behaviour.

Beyond these quantitative approaches, a 
functional understanding of ML model 
behaviour using XAI can give critical 
insight not available through quantitative 
validation approaches. An example is a 
study carried out in the nineties using 
rules based learning and neural networks 
to decide which pneumonia cases should 
be admitted to hospital or treated at 
home. The models were trained on 
patients’ recovery in historical cases9. 
Both models predicted patient recovery 

8 Shrikumar et al (2017). See also: https://github.com/kundajelab/deeplift 
9 Caruana, et al. (2015)
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with high accuracy with the neural 
network found to be the most accurate. 
Both models predicted that pneumonia 
patients with asthma shouldn’t be 
admitted because they had a lower risk 
of dying. 

In fact, pneumonia patients were at such 
high risk, they were routinely admitted 
directly to the intensive care unit, treated 
aggressively, and as a consequence had a 
high survival rate. Because the rules 
based model was interpretable, it was 
possible to see that the model had learnt 
‘if the patient has asthma, they are at 
lower risk’. Despite ostensibly good 
quantitative performance metrics, the 
counterintuitive explanation invalidated 
the model from a clinical point of view. Had 
this model been deployed in production, it 
could have led to unnecessary patient risk 
and possibly death.

Thus a functional explanation, even if a 
gross approximation of the underlying 
model complexity, can catch the type of 
potentially dangerous informational 
shortcuts machine learning algorithms are 
good at finding in contravention of the 
developers intentions.

Whilst the previous example is unlikely to 
occur these days, there are many 
examples of badly trained algorithms 
using data such as people’s names to infer 
demographic characteristics, using URLs 
in mined text to classify documents and 
using copyright tags to classify images. 
These models may perform well in 
testing, but are liable to catastrophic 
failure or unintended consequences in 
production. This type of oversight can be 
avoided with even a fairly rudimentary 
deployment of XAI.

Continuous evaluation 
Unlike traditional software and hand 
crafted top down models, machine 
learning models may be periodically 
retrained or continuously updated 
(online learning) as they learn from new 
instances. Factoring explainable AI 
outputs into automated controls means 
robust qualitative rules based 
safeguards against unexpected, 
unwanted, and known weakness in 
model behaviour can be applied. For 
example, if a single pixel in an image is 
identified as the most important feature 
in a decision, the model could be the 
target of an adversarial attack by 
criminals. Applying the rule ‘if a single 
pixel is the primary explanatory feature 
by a large margin, then raise alert’ could 
safeguard against such attacks. Whether 
the reason is an adversarial attack or 
not, XAI has alerted us to problem, 
whatever the nature, through the 
application of common sense rules.

2.12 Model transparency
Model transparency is concerned with 
conveying to a user the structural details 
of the model, statistical and other 
descriptive properties of the training 
data, and evaluation metrics from which 
likely behaviour can be inferred. 
Irrespective of the need for explainable 
AI or not, this is basic information 
without which it is impossible to make 
informed use of a machine learning 
algorithm.

In cases where engineers are charged 
with making someone else’s model 
explainable, as may be the case with a 
commercially available off the shelf 
model, the model’s users should take 
into account the degree of transparency 
that comes with the model. Selecting an 
optimal approach to XAI is significantly 
more straightforward when the details 
of the model are well known rather than 
having to deal with a mystery black box.

9 Caruana, et al. (2015)
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We are moving out of the carefree days 
of silicon valley giants getting content in 
front of eyeballs and into a broad, 
industrial revolution where things are 
about to get a lot more serious…. Any 
cognitive system allowed to take actions 
on the back of its predictions had better 
be able to explain itself, if even in a 
grossly simplified way.

Explainability has been largely ignored 
by the business community and is 
something PwC is helping organisations 
to solve. There are no perfect methods, 
and some problems are inherently not 
semantically understandable, but most 
business problems are amenable to some 
degree of explanation that de-risks AI, 
builds trust, and reduces overall 
enterprise risk. Making XAI a core 
competency and part of your approach 
to AI design and QA will pay dividends 
today and in the future.

PwC is helping advise and assure our 
clients by building and helping 
organisations build AI systems that are 
explainable, transparent, and 
interpretable and by assessing and 
assuring organisations have built AI 
modes that adhere to our standards.

Key takeaways:

1. �AI must be driven by the 
business

Developers are mostly focussed on 
delivering well-defined functional 
requirements, and Business Managers 
on business metrics and regulatory 
compliance. Concerns around 
algorithmic impact tend only to get 
attention when algorithms fail or have a 
negative impact on the bottom line. 
Because AI software is inherently more 
adaptive than traditional decision-
making algorithms, problems can unfold 
with quicker and greater impact. 
Explainable AI can forge the link 
between non-technical executives and 
developers, allowing the effective 
transmission of top level strategy to 
junior data scientists. Insufficient 
governance and quality assurance 
around this technology is inherently 
unethical and needs to be addressed at 
all levels of the organisation. Without 
XAI, governance is very difficult.

2. Executive accountability
With the proliferation of AI systems and, 
equally, the increased impact on 
organisations, individuals and society, it 
needs to be clear who is accountable for 
an AI system’s decisions. If executives 
are required to accept accountability for 
AI, they will need to understand the risk 
it introduces to their business. Without a 
deeper understanding of the system’s 
rationales, executives would introduce 
unknown risks to their risk profile. In 
order to accept accountability, 
executives must have the confidence 
that a system operates within defined 
boundaries.

XAI is only going 
to get more 
important
AI is advancing, deployment is proliferating and the focus of 
regulators, customers and other stakeholders is increasing 
in step. XAI can help you keep pace.

Conclusion
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Classifying
machine learning
algorithms

Appendix 1

Reinforcement learning (RL) 

RL algorithms are software agents that learn policies about how to interact with 
their environment. They behave in a way most people expect of AI in the sense they 
that choose actions and ‘do things’ in response to other agents (such as humans). To 
do this, they rely on a state space representation of their environment. They seek to 
optimise cumulative reward over time by iteratively choosing actions that result in 
‘high value’ states. The value of various environment states are learnt in the training 
phase where the algorithm explores its environment. Applications in this domain 
include inventory management and dynamic pricing. Google DeepMind was able to 
train an algorithm, AlphaGo, using RL to beat a champion Go player. This technique 
has also been used to train robots to climb stairs like humans and to improve lane 
merging software for self-driving cars.

Unsupervised learning 

Training examples are unlabeled, so unsupervised algorithms look for naturally 
occuring patterns in the data. Historically this was usually clustering which can 
be used for segmentation tasks like customer segmentation and anomaly 
detection for financial crime detection. More recently, unsupervised approaches 
using DNNs (Autoencoders and Generative Adversarial Networks) are being 
increasingly used for filtering, dimensionality reduction, and in generative 
applications where models generate artificial examples of training instances 
such as human faces.

Supervised learning 

The most common approach to machine learning where the goal is to train a 
classifier or regressor by finding function that maps the training examples to 
training label with minimal error. Supervised learning is used in situations 
where the training data examples are labelled (e.g. image of a cat with label 
‘cat’) and the instances encountered in production expected to be drawn from a 
similar distribution of instances used in training. There are many applications 
ranging from image recognition, to spam detection, to stock price prediction.

Source: PwC

Exhibit 1 | Classifying machine learning algorithms
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As discussed, explainability refers to the understandability of a 
given result viewed as post hoc interpretations. Since most of 
these models do not give direct explanations as to why or how 
the results are achieved, we have provided subjective values on 
the scale of 1 to 5 (with 1 being the most difficult and 5 being the 
easiest) to rate how easy or difficult it is for an end user to 
decipher why a model made a certain decision. Each of these 
learning techniques has different structures that are affected by 
how they learn from new information.

AI algorithm 
class

Learning 
technique

Scale of 
explainability 
(1-5)

Reasoning/Explanation

Graphical 
models

Bayesian belief 
networks (BNNs)

3.5 BNNs are a statistical model used to describe the conditional 
dependencies between different random variables. BNNs have a high 
level of explainability because the probabilities associated with the 
parent nodes influence the final, making it possible to see how much 
of a certain feature is used to determine the final outcome.

Supervised or 
unsupervised 
learning

Decision trees 4 Decision trees partition data based on the highest information gain, 
where the nodes have the most influence. They are represented as a 
treelike structure where the most important feature is at the top, 
with other features branching off beneath it in order of relative 
importance. Out of all the ML learning techniques, decision trees 
are the most explainable because you can follow the progression 
of branches to determine the exact factors used in making the 
final prediction.

Supervised or 
unsupervised 
learning

Logistic 
regression

3 The most commonly used supervised learning technique, logistic 
regression represents how binary or multinomial response variables 
are related to a set of explanatory variables (that is, features). 
Because an equation is associated with the predictions of this model, 
we can investigate the influence of each feature on the final 
prediction. Equations can get messy, so we believe this technique is 
only moderately explainable.

Subjective scale of 
explainability of 
different classes of 
algorithms and 
learning techniques

Appendix 2

Exhibit 2 | Subjective scale of explainability of different classes of algorithms and learning techniques
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AI algorithm 
class

Learning 
technique

Scale of 
explainability 
(1-5)

Reasoning/Explanation

Supervised or 
unsupervised 
learning

Support vector 
machines (SVMs)

2 SVMs are based on the concept of decision planes that define decision 
boundaries. SVMs are similar to logistic regression except they 
choose ‘support vectors’ from the training samples that have the most 
discriminatory power. SVMs are difficult to explain because, while 
you may know the equation of the kernel and data partition, it is 
difficult to decipher what features were important in calculating that 
result.

Supervised or 
unsupervised 
learning

K-means 
clustering 
(unsupervised)

3 K-means clustering is an unsupervised learning technique used to 
group data into ‘K’ clusters of similar features. This technique is 
moderately explainable because one can view the centre of the 
clusters as descriptors of what each group represents—although, it is 
not always clear what certain clusters mean purely based on the 
centroids (centre point) of the clusters.

Deep learning Neural networks 
(NNs)

1 Neural networks are the building blocks of all deep learning 
techniques and are becoming more prevalently used in solving ML 
tasks. NNs are based on the biological structure of the brain in which 
neurons connect to other neurons through their axon. In the same 
way, these networks have hidden layers of nodes where information 
is transferred based on the node’s activation. This algorithm is the 
least explainable because each hidden node represents a non-linear 
combination of all the previous nodes. However, Israeli computer 
science professor Naftali Tishby’s recent theoretical work in this area 
may help explain why and how they work.

Ensemble 
models

Random forest/
boosting

3 Random forest techniques operate by constructing a multitude of 
decision trees during training, then outputting the prediction that is 
the average prediction across all the trees. Even though decision 
trees are pretty explainable, random forest adds another layer of tree 
aggregation that makes understanding the final result more difficult.

Reinforcement 
learning (RL)

Q-learning 2 Q-learning is a technique that learns from positive and negative 
rewards. It uses these rewards to estimate future returns based on 
taking a certain action in a certain state. This technique is not very 
explainable because the only information given with the certain 
predicted action is the estimated future reward. Users would not be 
able to understand the agent’s intent because it is looking multiple 
steps ahead.

Natural 
language 
processing 
(NLP)

Hidden Markov 
models (HMMs)

3 HMMs can be represented as the simplest dynamic Bayesian network 
(BBNs that change over time). It is a stochastic model used to model 
randomly changing systems where the future state only depends on 
the current state. Similar to BBN, you attribute certain weight to the 
previous states based on the probabilities, although the stochastic 
nature of HMM makes it slightly less explainable.

Source: PwC
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